V. 固有缺陷
“嵌入式光电二极管”(Pinned Photodiode,PPD)或“空穴堆积二极管”(Hole Accumulation Diode,HAD)最初开发目的是消除延迟并把全部电荷从光电二极管转移到ITCCD寄存器[12]。CMOS图像传感器的一个重大发展是在2000年代初期引进ITCCD光电二极管结构[11],如图7所示。在CMOS中,像素结构多数以每像素的晶体管数目来表示。大部分 CMOS图像传感器倾向使用电子卷帘快门(electronic rolling shutter),这有助于集成并只需少至三个晶体管(3T)就能实现。虽然有结构简单的优点,3T像素结构的缺点是电路来自kT/C(或温度)噪声的像素生成时域噪声会较大,而且不能轻易消除。
图7 ITCCD和5T CMOS图像对比图
嵌入式光电二极管最初引进到CIS以去除来自浮动扩散重置的噪声,后来并引进到四晶体管像素(4T)结构中。4T结构进行相关双采样(CDS)以消除重置瞬时噪声。这一结构也允许晶体管在像素间共用布局,以便于把每像素的有效晶体管数目减到两个或更少。事实证明,每像素的晶体管数目减少,能够空出更多范围供光敏部分或填充因子去更直接地把光线耦合到像素上。不过如图8所示,在获取视频或包含快动作的图像时,ERS会导致更多图像变形。PPD会在第二级时工作,以进行全局快门(GS)获取。它能够去除ERS伪影并进一步消除时域噪声、暗电流和固定模式噪声。接近PPD的第五个晶体管(5T)的功能是排除过多的电荷并调整重迭模式的集成时间(在集成时读出)。
图 8 图像瑕疵:CMOS ERS变形
全局快门(GS)模式一般配合ITCCD使用,但在某些状况下会对弥散现像敏感。
图9 图像瑕疵:CCD弥散
弥散是在电荷转移时出现的现像,会在影像上产生直线如图9。这瑕疵在高反差图像上尤其显著,但不应把它和相似的光晕现像混淆。最常用的解决方案是导入帧行间转移(Frame Interline Transfer,FIT)CCD结构,而FIT也拥有较高视频速率的优点。与CMOS等效的弥散参数是全局快门效率(Global Shutter Efficiency,GSE),有时也称为寄生光敏度(Parasitic Light Sensitivity,PLS),是对应于传感节点到光电二极管的敏感度比例。ITCCD的GSE值一般介乎于-88dB到-100dB[13],在CMOS则是-74dB到-120dB甚至是3D迭层结构的-160dB[14] 。利用先进定制像素微镜片(如zerogap)可在从改进波长反馈的敏感度到减小CMOS像素上的二极管所造成的填充因子损失方面实现显著的分别。它也是改进GSE性能的主要因素。
VI. CMOS成像技术的未来
CCD技术特别适合时间延迟积分(Time Delay Integration,TDI)领域。TDI(在扫描场景时,电子同步的积分和累加)的导入相对直接,只需要一个电荷转移器件就可以完成。这技术最初用于信噪比最大化,然后用于CIS CCD以保存良好的图像定义(MTF)。近年多个于模拟区域(电压)[18]或数字区域复製信号累加的尝试,为CMOS TDI开拓新的发展方向。不论在太空地面观测或是在机器视觉方面,CCD延迟积分结构的低噪声和高敏感度性能都广受欢迎。不过现时最令人期待的发展是基于CMOS工艺、但拥有CIS CCD的优点以及电荷转移寄存器结合行式ADC转换器的技术[17] 。虽然有长足进步,CMOS图像传感器的敏感度在光线非常微弱应用(如只有几十微流明的环境)仍然受限于读出噪声。使用电子倍增技术的EMCCD[15] 显示出在降噪方面的巨大潜力,因而受到科学成像市场的注意。一般来说,就如CCD被CMOS传感器取代一样, EMCCD也有潜力朝着电子倍增CMOS(electronmultiplying CMOS,EMCMOS)的方向发展[20]。一如EMCCD,EMCMOS计划改进光线非常微弱应用中的图像质量,以配合科学或监视方面的应用。CMOS技术有助于实现更小更具智能的系统、降低功耗,以减低量产的成本(即所谓的SWAP-C方法)。电子倍增的原理是在读出链任何加入任何噪声前为信号进行增益,使得噪声被增益摊分,以改进信噪比。基于CCD原理,信号会以电子包的形式传送,然后在读出之前共同对每一个像素进行倍增。CMOS的信号是在电压域,因而倍增工作必需在源跟随晶体管把噪声加进信号并传送到浮点之前完成[16]。
随着3D成像的流行,需要物件深度的信息,飞行时间(Time-of-Flight,ToF)技术在这一方面派上用场。ToF的原理是在传感器平面上设置人工脉冲光源并发射出去,然后把反馈的反射波段用于相关函数计算来得出距离。这一技术于1995年于 “锁定”CCD中首次提出[21]。而ToF在CMOS的应用则是由CCD像素的启发而来[22]。另一方法则是使用电流辅助光子解调器(Current Assisted Photonic Demodulators,CAPD)测量深度。两种方法都实现了工业3D传感器的量产并实现了一系列的应用如计算人数、安全监控、计量学、工业机器人、手势辨识和先进汽车驾驶者辅助系统(ADAS)等。这是都是CCD技术衍生的意念成功过度到CMOS作改进,再实现工业应用大规模导入的典型例子。
CMOS技术导入也衍生出新的应用范围。举个例子,跟CCD在1980年代在专业相机领域替代现像管(vidicontubes)相似,单光子雪崩二极管(Single- Photon Avalanche Diode,SPAD)原来的开发目的是作为光电倍增管(Photomultipliertubes,PMT)的固态替代产品。SPAD基本上是在所谓的盖革模式(Geiger mode)中,依照击穿模式上的反压进行偏置的p-n 结。不过这结构十分不稳定,任何能量改变都会导致雪崩效应。这一特点被用于单光子感测。通过在SPAD和输入电压之间导入一个简单的电容元件,利用被动抑制原理开闭雪崩,或使用嵌入式MOSFET通道启动主动抑制原理达到同一目的。这样就可以製作代表量子事件的数字信号。根据原理,SPAD一个基于简单结构的CMOS技术,无需用于图像传感器的专门工艺。不过因为它需要复杂的电路,SPAD阵列的工作也较为复杂。跟光子的到达一样, SPAD的引发和事件记数依定义是非同步的。CMOS技术因而是不二之选。例如这就能够非常快速地启动扫描像素阵列,以确认已转换的像素。这些帧组合后就能製作一个视频序列 [23]。
VII. 总结
早期一些宣称CCD年代终结的文章已被视为预言[1],只是实际的过渡时间比预计的长许多。另一方面开发用于CMOS图像传感器的图像结构种类和创新性都大大超越前人想像。随着晶体管蚀刻工艺缩小化和CMOS生产技术演进,这些创新都变得可行。大型工业成像厂商除了价格,还继续在光电性能方面进行竞争。现在的使用者已经不是单单在乎于拍照,而是获取人生中各个重要时刻,因而期待不论在任何光线状况下都能拍出完美的照片。工业应用也因着这些改进,在其它一般范围上得益。越来越多视觉系统也基于消费者市场趋势而调整其图像传感器要求,图像缩小就是一个例子。而高速处理能够提升高成本生产机器的产量并实现自动化工艺和检查,所以也是一个重要的经济因素。新的应用正把传感器推向性能极限并不允许图像内有更多噪声,推动了单光子成像技术。除了简单的摄影和显示,3D增强现实技术也用尽了CMOS技术的所有潜能,提供另类的视觉空间体验。一如地球上的主要物种,CMOS图像传感器已经大大进化并适应其周遭环境。
参考文献(REFERENCES)
[1] Active pixel sensors: Are CCD dinosaurs? ER Fossum IS&T/SPIE's Symposium on Electronic Imaging: Science and Technology, 2-14A.
[3] CCD vs. CMOS, Dave Litwiller, Photonics Spectra, 2001
[4] Determination of the optimal electrical bandwidth in CCD- and CMOS-based image detector applications, Robert H. Philbrick, SPIE 5499, Optical and Infrared Detectors for Astronomy, 2004
[5] CMOS vs. CCD: Changing Technology to Suit HDTV Broadcast, Lester J. Kozlowski, 2003
[6] Fundamental performance differences between CMOS and CCD imagers: Part 1, James Janesick et al., SPIE 6276, High Energy, Optical, and Infrared Detectors for Astronomy II, 62760M, 2006
[7] A 0.7 e-rms Temporal Readout Noise CMOS Image Sensor for Low Light Level Imaging, Y. Chen et al., IEEE International Solid-State Circuits Conference (ISSCC), 2012.
[9] L²CMOS Image Sensor for Low Light Vision, Pierre Fereyre et al., International Image Sensor Workshop, 2011
[10] Night Vision CMOS Image Sensors Pixel for SubmilliLux Light Conditions Amos Fenigstein, International Image Sensor Workshop, 2015
[11] A Review of the Pinned Photodiode for CCD and CMOS Image Sensors Eric R. Fossum, et al., IEEE Journal Of The Electron Devices Society, Vol. 2, no. 3, may 2014
[12] No image lag photodiode structure in the interline CCD image sensor, N Teranishi et al., Electron Devices Meeting, 1982 International (Volume:28 ), 1982
[14] A 3D stacked CMOS image sensor with 16Mpixel global-shutter mode and 2Mpixel 10000fps mode using 4 million interconnections, Symposium on VLSI Circuits (VLSI Circuits), T. Kondo et al., pages C90 - C91, 2015
[15] M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Transactions on Electron Devices, vol. 50, no. 5, pp. 1227–1232, May 2003
[16] Electron Multiplying Device Made on a 180 nm Standard CMOS Imaging Technology, Pierre Fereyre et al., International Image Sensor Workshop, June 2015
[17] First Measurements of True Charge Transfer TDI (Time Delay Integration) Using a Standard CMOS Technology, F. Mayer et al., International Conference on Space Optics, 2012
[18] CMOS long linear array for space application G. Lepage, Proc. SPIE 6068, Sensors, Cameras, and Systems for Scientific/Industrial Applications VII, 606807, 2006)
[19] Time-Delay-Integration Architectures in CMOS Image Sensors G. Lepage et al., IEEE Transactions On Electron Devices, vol. 56, no. 11, November 2009
[20] R. Shimizu and Al., “A Charge-Multiplication CMOS Image Sensor Suitable for Low-Light-Level Imaging” IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3603-3608 December 2009
[21] The lock-in CCD-two-dimensional synchronous detection of light, T. Spirig, P. Seitz et al., IEEE Journal of Quantum Electronics, Vol. 31, Iss. 9, p. 1705 – 1708, Sep 1995
[22] Demodulation pixels in CCD and CMOS technologies for time-of-flight ranging Robert Lange et al., Proc. SPIE 3965, Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications, 177 (May 15, 2000)
[23] 320 x 240 Oversampled Digital Single Photon Counting Image Sensor N. AW. Dutton, VLSI Circuits Digest of Technical Papers, 2014